달력

5

« 2024/5 »

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
2015. 8. 27. 09:48

스마트 분산전원 기술 이슈&리포트2015. 8. 27. 09:48

스마트 분산전원 기술

 

기존 분산전원에 적용되는 계통연계 인버터는 입력 DC 전력을 AC 계통에 전달해주는 전력변환 장치로서, 일반적으로 효율적인 전력 전달을 위한 최대 출력점 제어기능, AC계통 연계를 위한 그리드 동기화 기능, 계통 고장 시 역전력 공급 방지를 위한 독립운전 방지 기능 등을 포함한다. 스마트 분산전원은 개별적으로 동작해왔던 기존의 분산전원과는 달리 목적에 따라서 상위의 관리 시스템과 유기적인 연동을 필요로 하므로 양방향 통신이 필수적이다.
신재생 에너지 분산전원의 계통 투입 비율이 높아짐에 따라서 스마트 분산전원의 스마트 인버터 기능이 전력계통 안정도와 신뢰도 그리고 운용 효율을 상당 부분 개선시킬 수 있을 것으로 기대된다.

 

자료. 한국전기연구원 차세대전력망연구본부 책임연구원 조창희

 


Ⅰ. 신재생 분산전원 현황

 

2015년 5월, 하와이 의회는 2045년까지 하와이 군도 전력의 100%를 신재생 에너지에 의해서 공급하도록 규정하는 법안을 통과했다. 이 법안에 따르면 하와이는 전력분야에서 카본프리 목표 날짜를 설정한 미국의 첫 번째 주가 된다. 이는 풍력 발전과 태양광 발전에 대한 주정부와 전력회사의 꾸준한 인센티브에 의한 신재생 에너지 설치가 급증했기 때문으로, 신규 법안은 이러한 붐을 더욱 확대하여 현재의 신재생 에너지 비율 21%에서 2020년에 30%, 2030년에 70%, 마지막으로 2045년에 100%를 달성하는 것을 목표로 한다.
2011년 지진해일에 의해서 큰 피해를 입은 일본의 후쿠시마 현도 화석연료에 의한 발전을 배제하고 신재생 전원에 의해서만 전력을 공급받는 데드라인을 2040년으로 설정했다. 일본은 동경전력의 후쿠시마 핵발전소 사고로부터 회복하기 위해 반드시 달성해야할 수단으로 태양광 발전이나 풍력 발전 등의 신재생 에너지를 주목하고 있다.
유럽의 경우 풍부한 수자원을 기반으로 하는 수력 발전을 통해서 수요량 대비 신재생 에너지 비율이 100%를 넘긴 노르웨이를 선두로, 세계 수위권인 풍력 발전(약 40%)을 포함 전체 소비 전력의 60% 이상을 신재생 에너지로 공급받는 덴마크, 그리고 수력을 제외한 신재생 에너지 비율이 작년 기준 각각 30%와 27%인 포르투갈과 스페인 등이 온실가스 감축과 청정에너지 혁신을 위한 신재생 에너지 보급에 앞장서고 있다.

 

 

그림1.jpg

 

 

그러나 신재생 에너지는 원천적으로 기후조건에 따라서 출력을 생산하는 특성을 가지고 있어 소비 전력량에 비해 신재생 에너지 투입 비율이 큰 경우에는 필연적으로 전압 변동이나 주파수 변동 등의 전력 품질 문제가 생길 수 있다. 특히, 우리나라와 같이 대규모 전력계통과 연결되지 못한 고립형 전력계통이나 다른 나라와 송전선 연결이 제한적인 경우에는 그 문제가 더 심각할 수 있다. 그러므로 간헐적인 신재생 에너지 전원을 전력계통에 투입하기 위한 전력계통의 높은 수준의 신뢰도를 유지하기 위한 기술적인 해결방안을 필요로 한다.
이러한 문제의 해결 방법의 하나로서, 스페인의 전력계통 운영자(REE, Red Electrica de Espana)는 2006년 세계 최초로 풍력 단지의 중앙급전 제어 시스템을 개발하여 전국의 풍력발전 단지 원격제어를 수행하고 있다. 이 시스템이 개발되기 이전에 REE는 전력계통에 최대로 투입될 수 있는 풍력발전의 비율을 12% 이하로 고집했으나, 현재는 풍력발전이 순시 출력이 전력 수요의 60%를 넘는 경우도 발생한다.

 

그림2.jpg

 

 

이러한 신재생 에너지원의 특징은 계통 운영자에게 큰 부담이 되고 있으며 그 결과로 신재생 에너지 전원이 전력계통에 연계될 때 필수적으로 지켜야할 규정(그리드코드, 계통연계 기술기준)을 강화하는 방향으로 법규가 만들어지고 있다.
독일의 에너지와 수자원 협회(BEDW, Germany’s Bundesverband der Energie und Wasserwirtschaft)와 VDE-AR-N 4105 표준은 풍력 발전 또는 태양광 발전 시스템을 대상으로 원격에 의한 설정된 전력 제한(Power Curtailment) 준수와 역률 제어, FRT(Fault Ride-Through), 그리고 Dynamic Grid Support 기능을 규정하고 있다.
미국의 경우 기존의 분산형 전원 계통연계 기준인 IEEE 1547-2003에서는 분산 전원이 계통 연계점(PCC, Point of Common Coupling)에서의 전압 조정을 금지했지만 개정된 IEEE 1547a-2014에서는 지역 EPS 사업자나 수요 반응(DR) 관리자의 필요에 따라서 능동적인 전압 조정이 가능하도록 규정이 변경되었으며 전압 및 주파수 고장 상황에 대한 FRT 규정이 추가되었다.
미국 캘리포니아는 주의 전력계통 연계 규정인 Rule 21의 업그레이드를 진행 중인데, 여기에는 대부분의 분산전원이 계통연계 인버터에 의해서 전력을 생산하는 것에 착안하여 강화되고 있는 그리드코드를 만족시키기 위한 스마트 인버터 기능을 포함하는 스마트 분산전원의 개념을 도입했고, 필요로 하는 분산전원 필수 기능을 단계별로 개발하는 접근법을 제시했다.

 


II. 스마트 분산전원 기술

 

기존 분산전원에 적용되는 계통연계 인버터는 입력 DC 전력을 AC 계통에 전달해주는 전력변환 장치로서, 일반적으로 효율적인 전력 전달을 위한 최대 출력점 제어기능, AC계통 연계를 위한 그리드 동기화 기능, 계통 고장 시 역전력 공급 방지를 위한 독립운전 방지 기능 등을 포함한다.
스마트 분산전원 구현을 위한 스마트 인버터 기능은 기본적으로 분산전원의 무효전력과 주파수/전압을 제어하는 기능으로서, 양방향 통신을 기반으로 필요에 따라 원격에서 인버터의 운전, 동작 모드, 운전 파라미터 등을 제어하여 전력 계통의 운영에 기여할 수 있는 발전된 분산전원 기능을 의미한다.
스마트 분산전원의 기능은 기능 구현의 난이도에 따라서 3가지로 구분될 수 있다. 기본 기능은 통신에 의한 분산전원의 상태정보 모니터링이나 계통 연계/차단 제어 그리고 이벤트 로그 및 리포트 기능이 포함된다.
중급 기능은 운전 모드나 장치 설정 등의 원격 파라미터 설정, 전압-무효전력 제어, 전압-유효전력 제어 등 미리 설정된 특성 곡선에 따른 자율적인 제어, 그리고 전압 및 주파수의 고장 복구를 위한 FRT 기능 등이 포함된다. 마지막으로 고급 기능은 동적 무료전력 보상이나 가격 또는 온도에 따른 제어 기능, 스케줄 기반 제어 등으로 구성된다.
이러한 스마트 분산전원의 진보된 기능들은 기존의 기후조건에 따라서 전력을 생산하는 단순한 분산전원에서 설치된 지역의 상황에 따라 분산전원 자신의 자율적인 판단과 관리자의 목적에 따라 가변적 기능을 수행하는 스마트 분산전원으로 발전했으며 그 결과 계통의 신뢰도 및 안정도 향상과 운영 효율을 높이는 수단이 될 수 있다.

 

 

그림3.jpg

 

 

스마트 분산전원은 개별적으로 동작해왔던 기존의 분산전원과는 달리 목적에 따라서 상위의 관리 시스템과 유기적인 연동을 필요로 하므로 양방향 통신이 필수적이다.
디지털 변전소 내부의 정보 교환 및 통신을 위한 국제 표준인 IEC 61850은 최근 일부 개정된 2판(Ed.2)에서 제목을 ‘Communication Networks and Systems for Power Utility Automation’으로 변경하여 전력산업 전반을 위한 표준임을 명시했고, 상위 시스템과의 연계, 수력 발전, 풍력 발전, 분산전원 등 그 적용 영역이 점점 확대되고 있다.
2013년 2월에 발간된 기술 보고서(IEC 61850-90-7)를 통해서 전력 변환장치 기반 분산전원을 관리하기 위해서 분산전원의 스마트 인버터의 기능을 정의하고, 이를 구현하기 위한 정보 표현 방법을 오브젝트 모델로 제시했다.
이 보고서는 분산전원의 자율 제어와 브로드캐스트/멀티캐스트에 의해서 상위 제어기와 느슨하게 결합된 다중 계층 구조 제어에 대해서 제안하고 있으며, 스마트 분산전원의 인버터 기능에 대한 기초자료를 제공한다.
미국 캘리포니아에서는 캘리포니아 공공시설 위원회(CPUC, California Public Utilities Commission)가 주도적으로 스마트 인버터(분산전원) 관련 기술을 검토 중이며, 스마트 인버터 워크숍(Jun 2013)을 개최하여 전력회사(SCE, SDGE, PG&E)와 기관(NREL, EPRI, TUV Rheinland, SunSpec Alliance) 및 관련 회사(SMA, Fronius)들의 관심을 모았다.
현재 CPUC 관리 아래의 스마트 인버터 워크 그룹(SIWG)에 의해서 단계별로 기술적 권장사항과 시험 계획 및 절차가 준비되고 있다.
1단계로 스마트 인버터의 자율 기능에 대한 규정이 2014년 12월에 완료되었고, 2단계인 스마트 인버터의 통신 인터페이스에 대한 기술적 권고 사항에 대한 논의가 진행 중이다. 3단계의 스마트 인버터 상호 작동 기능에 대한 내용은 유동적이며 그 필요성과 요구사항에 대하여 조사하고 있다.
국제 스마트그리드 협의체(ISGAN)의 워크 프로그램 중 하나인 스마트그리드 국제 연구기관 네트워크(SIRFN, Smart Grid Research Facility Network)에서는 국제 공동 연구를 통해서 스마트그리드 관련 기기들의 시험과 평가에 대한 역량을 강화하고 있다.
현재의 Sandia National Lab, DERLab, EPRI, NREL, UL, EPRI, IEC, IEEE 그리고 NIST 등이 분산자원의 통합을 위한 태양광 발전 인버터의 시험에 대한 연구를 수행하고 있으며 새로운 표준에 적합한 하드웨어/소프트웨어 시험 절차를 정의할 예정이다.
특히 스마트 인버터의 시험과 관련하여 Sandia National Lab과 SunSpec Alliance를 중심으로 스마트 인버터의 상호 운용성 검증 플랫폼을 개발 중이다. 또한 스마트 인버터 시험을 위한 기본 플랫폼을 완성하여 기본 기능인 원격 투입/차단 기능, 전압-무효전력 제어 기능 등 초기 단계의 시험을 진행 중이며, 확장된 기능에 대한 시험 절차와 기준을 가까운 시일 내에 완료할 예정이다.
미국 표준 기술 연구소(NIST)의 최근 확정된 스마트그리드 프레임워크 및 로드맵 3.0에서 스마트 그리드의 상호 운용성을 지원하는 새로운 표준들을 추가했다. 이 목록은 2.0 프레임워크에 없는 7개의 표준을 더하여 74개 표준과 프로토콜을 포함한다.
시험 및 인증이 산업계가 스마트그리드를 위한 중요한 기본 사항임에 인식을 같이하고, 합의에 도달함에 따라서 3.0 프레임워크에서는 이 항목에 대한 더 깊은 논의를 포함하고 있다.

 

 

Ⅲ. 결론

 

신재생 에너지 분산전원의 계통 투입 비율이 높아짐에 따라서 스마트 분산전원의 스마트 인버터 기능이 전력계통 안정도와 신뢰도 그리고 운용 효율을 상당 부분 개선시킬 수 있을 것으로 기대된다.
미래의 신재생 에너지 분산전원의 보급 확대를 위해서는 스마트 인버터 기능과 정보 통신 기술이 필수적이며, 차세대 전력망을 구성하는 신재생 분산전원들의 기반 기술이 될 것이다. 현재 국제적으로 스마트 인버터의 상호 운용성과 성능을 시험할 수 있는 시험 플랫폼이 각국의 연구 기관과 인버터 공급사에서 개발되고 있는 상황으로, 각 기관 사이의 국제 공동연구를 통해서 개발 내용과 시험 결과를 공유함으로써 국제적인 공감대를 형성하고 있다.
국내의 경우 기존 분산전원의 기능 구현과 성능 향상에 대한 내용을 위주로 연구가 진행되고 있으며 차세대 스마트 분산전원에 대한 연구는 검토 단계에 있다.
국제 연구 추세에 우리나라도 적극적으로 동참하여 신재생 분산전원 관련 산업을 국제적으로 선도할 수 있기를 기대한다.

※ 출처 : EngNews (산업포탈 여기에) - 스마트 분산전원 기술
:
Posted by 매실총각